Massive MIMO Two-Way Relaying Systems with SWIPT in IoT Networks

Jinlong Wang, Gang Wang, Member, IEEE, Bo Li, Member, IEEE, Hongjuan Yang, Member, IEEE, Yulin Hu, Senior Member, IEEE, and Anke Schmeink, Senior Member, IEEE

Abstract—In 6th generation (6G) communication networks, ultra-high data rate and reliability are greatly vital for massive user connections and network sensors such as Internet of Things (IoT) devices. Simultaneous Wireless Information and Power Transfer (SWIPT) has been evolved as an efficient strategy to enhance the reliability of wireless communication systems through prolonging the battery lifetime by harvesting energy from the received radio-frequency (RF) signals. Furthermore, cooperative relay sensors in IoT networks can extend the network coverage. In this paper, we consider a massive multiple-input multiple-output (MIMO) two-way relaying system, where the relay node splits the received RF signals into two power streams, one for information decoding (ID) and the other for energy harvesting (EH). Two classical and linear relay precodings, i.e., zero-forcing reception/zero-forcing transmission (ZFR/ZFT) and maximum-ratio combining/maximum-ratio transmission (MRC/MRT), are adopted to satisfy the requirements of high-rate in this relay system. Different from prior work, the SWIPT technique and large-scale fading effects of MIMO channels are taken into account for deriving the asymptotic sum-rates of four prevalent power scaling cases when the number of relay antennas grows to infinity. Finally, the analytical results are evaluated by the presented simulation and numerical results.

Index Terms—Massive MIMO, SWIPT, two-way relaying, ZFR/ZFT, MRC/MRT.

I. INTRODUCTION

Driven by the explosive growth and the massive access of smart devices, ultra-reliable and green communication technologies will be desired in 6th generation (6G) communication networks which provide fast connections and applications [1], [2]. The Internet of Things (IoT) is expected to be as a crucial component of the 6G wireless networks. With the growth of IoT, tens of billions of IoT devices will connect the wireless networks to supply various applications, e.g., industrial communication, e-health care and smart city [3], [4].

It is highly challenging to keep the quality of service (QoS) since the energy of the batteries of IoT devices is limited [5], [6]. Traditional wireless devices in IoT networks with built-in batteries restrict the performance of the communication system due to the operational or economical constraints and the inconvenient changing and replacing of batteries. Simultaneous wireless information and power transfer (SWIPT) has received increasing attention in IoT communication networks, since it has the capability of prolonging the lifetimes of wireless devices [7]. Thus, SWIPT technique has a significant influence on the reliability of wireless communication systems [8]. Furthermore, SWIPT can use the broadcast character of the radio-frequency (RF) signal to enhance the energy efficiency of IoT networks [9], [10]. In [11], two classical and feasible schemes, i.e., time switching (TS) and power splitting (PS) are proposed as SWIPT technique. The TS-based design switches over time between energy harvesting (EH) and information decoding (ID) processing [12], while the PS-based one splits the received RF signals into two power streams, one for ID and the other for EH [13].

A. Related works

To further improve the communication performance, one other crucial technique, massive multiple-input multiple-output (MIMO), has been adopted into the relay systems [14]–[17]. It has been shown that MIMO relay system can not only improve the rate performance but also extend the network coverage of wireless communication system when compared with the single-antenna device-to-device system [18], [19].

Specifically, the multi-pair massive MIMO two-way relay system where full-duplex (FD) mode was applied was considered in [20], the asymptotic spectral efficiencies with two typical beamformings at a relay, i.e., zero reception/zero-forcing transmission (ZFR/ZFT) and maximum-ratio combining/maximum-ratio transmission (MRC/MRT), were derived and analyzed. Although the massive MIMO relay system has a considerable rate in [20], that the source nodes are equipped with only one single antenna limits the system performance. Similarly, in [21], [22], the sum-rates of four power scaling cases in the same system with antenna correlation was investigated to improve the spectral efficiencies of relay system. However, the impact of path loss is not yet understood. This theoretical performance analysis is much more significant for the practical application of massive MIMO relay system.

Besides, MIMO communication systems can dramatically harvest more energy from the received RF signals [23]–[25]. Additionally, by equipping multiple antennas at the transmitter, RF energy can be more effectively transferred to the receiver compared with the device installing a single antenna. Hence, MIMO relay systems with SWIPT technique have been widely investigated [26]–[32]. In particular, a MIMO relaying system which adopts the TS protocol was considered in [26], where the rate was maximized by designing the robust beamforming matrices of transceivers under energy constraints. In [27], the TS scheme was adopted for massive MIMO relay systems,
and it has indicated that the achievable rate would approach to the deterministic expression as the amount of relay antennas increases. A multi-antenna relay communication system which contain multiple users has been studied in terms of TS powered relay nodes in [28]. A robust precoding scheme which maximizes the sum-rate of the multi-user relay system has been proposed by the author of [28]. Additionally, in [32], a design of the PS factor and the beamforming matrices at the transceivers for a MIMO two-way relay system based on maximizing the energy efficiency was introduced, where one source is capable of SWIPT. However, massive MIMO two-way relaying systems where the relay is capable of PS has not been investigated so far.

B. Motivation

To achieve the considerable and reliable communication, a feasible way is adopting SWIPT and MIMO techniques into the relay system. It is noteworthy that MIMO technique can increase the energy efficiency and spectral efficiency. On the one hand, SWIPT technique can extend the life time of communication devices. On the other hand, the relay node can be used to expand the coverage of the communication network.

Although these related works mentioned above have established a solid foundation for the relay system with SWIPT, there are still many intractable issues needed to be solved. In particular, the authors in [12], [13], [30] studied a two-way relay system with SWIPT. The rate performance is far from the ideal results due to the users equipped with a single antenna. Besides, the authors in [27] focused on the performance analysis of massive MIMO two way relay with EH, while they ignored the large-scale fading of MIMO channel when deriving the expression of the deterministic rate. Accordingly, the performance of two-way relay system with SWIPT is still far from being well addressed.

Inspired by the above description, in this paper, we investigate the massive MIMO two-way relay system, where SWIPT is used at the relay, and derive the asymptotic sum-rate of the system. Different from the existing relaying system, PS-based relay node and large-scale fading are introduced. Moreover, massive antennas make the performance analysis much challenging. Based on the derivation of the asymptotic sum-rate, the impacts of various parameters, e.g., PS factor and placement ratio, upon the rate performance are analyzed.

C. Contributions

In this paper, we consider a massive MIMO two-way relaying system with a PS relay node. The main contributions are fourfold:

- We propose a massive MIMO two-way relaying system where the relay is capable of PS. The system model distinguishes from the existing relaying system, since the SWIPT technique and large-scale fading effects of MIMO channels are considered.
- Two classical and linear relay precodings, i.e., ZFR/ZFT and MRC/MRT, are adopted to satisfy the requirements of high-rate in this relay system. The deterministic sum-rate with two precodings are derived when the number of relay antennas increases to infinity.
- After obtaining the deterministic sum-rates, the corresponding asymptotic performance of four classical power scaling cases has been studied and analyzed.
- Simulations are conducted to evaluate the asymptotic performance of the achievable sum-rates. Besides, the PS factor, placement ratio and antenna numbers of users have been investigated to improve the sum-rates of the relaying system.

The rest of the paper is outlined as follows. In Section 2, the massive MIMO two-way relaying system with SWIPT is introduced in detail. The deterministic sum-rate with two classical and linear precodings are derived in Section 3. Section 4 provides the asymptotic sum rate of four prevalent power scaling cases. In Section 5, numerical results are conducted to verify the analytical results. Finally, Section 6 gives the conclusion.

II. SYSTEM MODEL

We consider a massive MIMO two-way relaying system as illustrated in Fig. 1, where one PS relay R helps two users to communicate, denoted as U1 and U2. Each user has a small number of antennas N, while R is employed with a large number of antennas M, i.e., M ≫ N. According to [33]–[35], we assume that all the channel characteristics vary with time slowly enough so that they can be perfectly estimated by utilizing the feedback channels or the training sequences. Moreover, the amplify-and-forward mode is applied. Two users have their steady power supplies, while the transmission power of R relies on the RF energy sent from two users. The SWIPT technique is adopted at R, and the PS scheme is considered. Furthermore, R utilizes the stored energy to broadcast the ID signal to users.

With the half-duplex relay mode, the communication period block T is equally partitioned into two separate phases, i.e.,
a multiple access (MAC) phase and a broadcast (BC) phase. In the MAC phase, two users transmit their signals to R. The received signal at R can be written as

\[y_R = \frac{P_U}{N} H_1 x_1 + \frac{P_U}{N} H_2 x_2 + n_R, \]

where \(x_i \in \mathbb{C}^{N \times 1} \) denotes the symbol vector at \(U_i \) with \(\mathbb{E} [x_i x_i^H] = I_N, (\cdot)^H \) is the conjugate transpose operation of one matrix, \(H_i \in \mathbb{C}^{M \times N} \) is the MIMO channel matrices of \(U_i \)-to-R link. Moreover, following [26], [30], \(H_i \) can be denoted as \(H_i = \sqrt{L_i} \bar{H}_i \), where \(L_i \) stands for the large-scale fading, \(\bar{H}_i \) indicates the small-scale fading with variance \(\sigma^2_{R,u_i} \). \(n_R \) represents the zero-mean additive white Gaussian noise (AWGN) vector at R with covariance matrix \(\sigma^2_{R,z} I_M \). Note that the average power allocation beamforming scheme, i.e., \(\bar{H} \) denoted as \(\bar{H} = \frac{1}{i} \bar{H}_i \phi \) for small-scale fading with variance \(\phi^2 \).

The received RF signal at R is split into two portions with the PS factor \(\rho \in (0, 1) \), and \(\rho \) portion is used for ID, \(1 - \rho \) portion is for EH. Assuming that PS factors in terms of all antennas of the relay are identical for the purpose of reducing the complexity of massive MIMO relay system. According to [11], the ID signal at R is represented by

\[y_{R,ID} = \sqrt{\rho} \left(\frac{P_U}{N} (H_1 x_1 + H_2 x_2) + n_R \right) + n_{R,z}, \]

where \(n_{R,z} \) is PS signal processing noise at R with covariance matrix \(\sigma^2_{R,z} I_M \). The harvested energy at R is given by [11], [30]

\[E_H = \frac{T}{2} \eta (1 - \rho) \text{tr} \left(\frac{P_U}{N} \sum_{i=1}^{2} H_i H_i^H \right), \]

where \(\text{tr} (\cdot) \) indicates the trace operation of one matrix and \(\eta \in (0, 1] \) denotes the energy conversion efficiency of R. In addition, we define the power factor of R as \(E_R = E_H / (T/2) = \eta (1 - \rho) \text{tr} \left(\frac{P_U}{N} \sum_{i=1}^{2} H_i H_i^H \right) \).

In the BC phase, R utilizes the harvested energy to transmit the ID signal with a precoding matrix \(F_R \in \mathbb{C}^{M \times M} \) as \(x_R = F_R y_{R,ID} \) to two users. The received signal at \(U_i \) is

\[y_i = G_i F_R \sqrt{\rho} \left(\frac{P_U}{N} (H_i x_i + H_i x_i) + G_i F_R n_R \right) + G_i F_R n_{R,z} + n_i, \]

where \(\tilde{i} \) is used to denote the desired signal of the paired user, e.g., \(i = 1 \) for \(i = 2 \) and \(i = 2 \) for \(i = 1 \). \(G_i \in \mathbb{C}^{N \times M} \) is the MIMO channel matrix of R-to-U_i link. Similar to \(H_i \), \(G_i \) is modeled as \(G_i = \sqrt{L_i} \bar{G}_i \), and \(\bar{G}_i \) indicates the small-scale fading with variance \(\sigma^2_{R,u_i} \). \(n_i \) is the AWGN at \(U_i \) with covariance matrix \(\sigma^2_{I} I_N \). As stated in [20], [21], the self-interference term \(G_i F_R \sqrt{\rho} \left(\frac{P_U}{N} H_i x_i \right) \) can be integrally cancelled. Therefore, the received signal at \(U_i \) is obtained as

\[y_i = \sqrt{\frac{P_U}{N}} \sqrt{\rho} G_i F_R H_i x_i + \sqrt{\rho} G_i F_R n_R \]

\[+ G_i F_R n_{R,z} + n_i. \]

According to (5), the instantaneous achievable rate at \(U_i \) is given by

\[R_i = \frac{1}{2} \log_2 \det \left((\rho \sigma^2_R + \sigma^2_{R,z}) W_i + \sigma^2_N I_N \right)^{-1}, \]

where \(Q_i = (G_i F_R H_i) (G_i F_R H_i)^H \) and \(W_i = G_i F_R F_R^H \bar{G}_i \). Based on (6), the instantaneous achievable sum-rate of massive MIMO two-way relaying system is represented by

\[R_{sum} = \sum_{i=1}^{2} R_i. \]

III. DETERMINISTIC SUM-RATES WITH ZFR/ZFT AND MRC/MRT RELAY PRECODING

According to [21] and [22], the instantaneous achievable rate will approach a deterministic rate when the number of relay antennas becomes large. To study the asymptotic performance of massive MIMO relay systems, the deterministic sum-rates with two linear and classical precodings are introduced in this section.

A. Deterministic sum-rate with ZFR/ZFT relay precoding

1) ZFR/ZFT processing at the relay: With ZFR/ZFT precoding, the relay employs the ZFR technique to deal with the received signals, and applies the ZFT technique to forward the processed signals. The ZFR/ZFT relay precoding matrix is written as \(F_{zf} = \beta_z f \bar{F}_{zf} \). \(\beta_z f \) is the amplification factor of ZFR/ZFT relay precoding and \(\bar{F}_R \) is shown as

\[\bar{F}_{zf} = G_{fBC}^H (G_{fBC} G_{fBC}^H)^{-1} T (H_{MAC} H_{MAC}^H)^{-1} H_{MAC}^H, \]

where \(G_{fBC} = \left(G_1^T G_2^T \right)^T \), \(H_{MAC} = \left(H_1 \ H_2 \right) \) and \(T = \left(\begin{array}{cc} 0_{N \times N} & T_1 \\ T_2 & 0_{N \times N} \end{array} \right) \) denotes a block permutation matrix which is used to align transmission information of two users. Under the power constraint at \(R \), i.e., \(\text{tr} \left(\mathbb{E} [x_R x_R^H] \right) = P_R \), we obtain

\[\beta_{zf} 2 \left(\frac{P_U}{N} \rho \text{tr} \left(\bar{F}_{zf} H_{MAC} H_{MAC}^H \bar{F}_{zf}^H \right) \right) \]

\[+ \rho \sigma^2_R \text{tr} \left(\bar{F}_{zf} F_R^H \right) + \sigma^2_{R,z} \text{tr} \left(\bar{F}_{zf} F_{zf}^H \right) \right) = P_R. \]

Therefore, the amplification factor of ZFR/ZFT relay precoding can be written as (10) at the top of next page.

2) Deterministic sum-rate with ZFR/ZFT relay precoding: As shown in (6), the sum-rate performance correlates with the relay amplification factor, the desired signals of users and the noise terms. Hence, we will investigate the deterministic results of all these terms as follows.

(a) Deterministic amplification factor:
\[\beta_{zf} = \sqrt{\frac{P_R}{N} \rho \text{tr} \left(\bar{F}_{zf} H_{MAC} H_{MAC}^H \bar{F}_{zf}^H \right) + \rho \sigma_R^2 \text{tr} \left(\bar{F}_{zf} \bar{F}_{zf}^H \right) + \sigma_{R,z}^2 \text{tr} \left(\bar{F}_{zf} \bar{F}_{zf}^H \right)} . \]
(10)

\[\beta_{zf}^2 = \frac{P_R M^2}{N \rho M \text{tr} \left(\bar{F}_{zf} H_{MAC} H_{MAC}^H \bar{F}_{zf}^H \right) + \left(\rho \sigma_R^2 + \sigma_{R,z}^2 M^2 \text{tr} \left(\bar{F}_{zf} \bar{F}_{zf}^H \right) \right)} . \]
(11)

By the definition of \(\bar{F}_{zf} \), \(\beta_{zf}^2 \) can be rewritten as (11). Applying the trace property \(\text{tr} \left(AB \right) = \text{tr} \left(BA \right) \) and (10), we can obtain

\[\Omega_{zf1} = \text{tr} \left(MH_{MAC}^H \bar{F}_{zf} H_{MAC} \right) \]
\[= \text{tr} \left(MT^H \left(G_{BC} G_{BC}^H \right)^{-1} T \right) \]
\[= \text{tr} \left(T^H \left(\frac{G_{BC} G_{BC}^H}{M} \right)^{-1} T \right) . \]
(12)

Future employing the definition of \(G_{BC} \), we achieve

\[\left(\frac{G_{BC} G_{BC}^H}{M} \right)^{-1} = \left(\frac{G_M G_M^H}{M} \right) \frac{G_{BC} G_{BC}^H}{M} . \]
(13)

With the law of large numbers [21], we get

\[\frac{G_M G_M^H}{M} \xrightarrow{a.s.} \frac{L_1 v^{2}_{\varphi_{tu}}}{M} I_N , \]
(14)

\[\frac{H_{MAC}^H H_{MAC}}{M} \xrightarrow{a.s.} \frac{L_1 v^{2}_{\varphi_{tu}}}{M} I_N , \]
(15)

where \(\xrightarrow{a.s.} \) represents the convergence operation when \(M \) tends to infinity. Plugging (14) into (13), we achieve

\[\left(\frac{G_{BC} G_{BC}^H}{M} \right)^{-1} \xrightarrow{a.s.} \frac{L_1 v^{2}_{\varphi_{tu}}}{M} I_N . \]
(16)

And, on the basis of (12) and (16), we obtain

\[MH_{MAC}^H \bar{F}_{zf}^H \bar{F}_{zf} H_{MAC} \xrightarrow{a.s.} \left(\frac{L_2 v^{2}_{\varphi_{tu}}}{M} \right)^{-1} T_2^H I_N T_2 \]
(17)

Combining (17) and the trace property \(\text{tr} \left(AB \right) = \text{tr} \left(BA \right) \), the deterministic result of \(\Omega_{zf1} \) becomes (18) at the top of next page.

Substituting (8) into \(\Omega_{zf2} \) further yields

\[\Omega_{zf2} = M^2 \text{tr} \left(\bar{F}_{zf}^H \bar{F}_{zf} \right) \]
\[= \text{tr} \left(T^H \left(\frac{G_{BC} G_{BC}^H}{M} \right)^{-1} \left(\frac{H_{MAC}^H H_{MAC}}{M} \right)^{-1} \right) \]
(19)

Based on (15), it is easy to obtain

\[\left(H_{MAC}^H H_{MAC} \right)^{-1} = \left(\frac{H_{MAC}^H}{M} \right)^{-1} \]
(20)

Substituting (16) and (20) back into (19), the deterministic result of \(\Omega_{zf2} \) can be expressed as (21) at the top of next page. Finally, using the results of (18) and (21), we achieve the deterministic amplification factor of ZFR/ZFT relay precoding as (22) at the top of next page. It is noteworthy that \(\beta_{zf}^2 \) represents the deterministic state of \(\beta_{zf}^2 \) when \(M \) tends to infinity.

(b) Deterministic achievable sum-rate:

According to (6), we have

\[Q_i = \beta_{zf}^2 \left(G_{BC} \bar{F}_{zf} H_i \right) \left(G_{BC} \bar{F}_{zf} H_i \right)^H . \]
(23)

Through multiplying \(G_{BC} \) and \(H_{MAC} \) on the left and right sides of \(\bar{F}_{zf} \), respectively, we have

\[G_{BC} \bar{F}_{zf} H_{MAC} = \left(G_{BC} \bar{F}_{zf} H_1 \right) \left(G_{BC} \bar{F}_{zf} H_2 \right) . \]
(24)

Based on the definition of the ZFR/ZFT design, we achieve

\[G_{BC} \bar{F}_{zf} H_{MAC} = T = \left(0_{N \times N} T_1 \right) \left(0_{N \times N} T_2 \right) \]
(25)

With (24) and (25), we achieve \(G_{BC} \bar{F}_{zf} H_i = T_i \). The deterministic result of desired signal term is simplified as

\[Q_i \xrightarrow{a.s.} \beta_{zf}^2 T_i T_i^H . \]
(26)

From (6), the relay noise term can be written as

\[W_i = \beta_{zf}^2 G_{BC} \bar{F}_{zf} \bar{F}_{zf}^H \bar{F}_{zf} G_{BC}^H . \]
(27)

The term \(\bar{F}_{zf} \bar{F}_{zf}^H \bar{F}_{zf} \) is multiplied by \(G_{BC} \) and \(G_{BC}^H \) at the left and right hand sides, respectively. Then, we obtain

\[G_{BC} \bar{F}_{zf} \bar{F}_{zf}^H G_{BC} = T \left(H_{MAC}^H H_{MAC} \right)^{-1} T^H \]
(28)

Substituting (20) into (28), we have the deterministic result of \(G_{BC} \bar{F}_{zf} \bar{F}_{zf}^H G_{BC} \) as

\[G_{BC} \bar{F}_{zf} \bar{F}_{zf}^H G_{BC} \xrightarrow{a.s.} \frac{1}{M} \left(T_1 \left(L_2 v^{2}_{\varphi_{tu}} \right)^{-1} I_N T_1^H \right) \left(L_1 v^{2}_{\varphi_{tu}} \right)^{-1} I_N T_2^H \]
(29)
\[\Omega_{z1} = \text{tr} \left(M H_{MAC}^H \tilde{F}_{z_f}^H H_{MAC} M \right) \xrightarrow{\text{a.s.}} \frac{1}{M} \sum_{i=1}^{N} \left(L_i \varphi_{u_i r}^2 \right) \text{tr} \left(T_i^H I_N T_i \right) + \left(L_1 \varphi_{u_1 r}^2 \right) \text{tr} \left(T_1^H I_N T_1 \right) \]
\[= \frac{N}{L_2 \varphi_{u_2 r}^2} + \frac{N}{L_1 \varphi_{u_1 r}^2} = \frac{N}{L_1 L_2 \varphi_{u_1 r}^2 \varphi_{u_2 r}^2} \]
\[\Omega_{z2} \xrightarrow{\text{a.s.}} \frac{1}{M} \sum_{i=1}^{N} \left(L_i \varphi_{u_i r}^2 \right) \text{tr} \left(T_i^H I_N T_i \right) \]
\[= \frac{N}{L_1 L_2 \varphi_{u_1 r}^2 \varphi_{u_2 r}^2} \]
\[\beta_{zf}^2 \xrightarrow{\text{a.s.}} \frac{2}{M} \sum_{i=1}^{N} \left(L_i \varphi_{u_i r}^2 \right) \text{tr} \left(T_i^H I_N T_i \right) \]
\[\bar{R}_{\text{sum},zf} = \sum_{i=1}^{2} \frac{1}{2} \log_2 \det \left(I_N + \left[\frac{P_U}{N} \beta_{zf}^2 \right] T_i^H T_i \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]

Meanwhile, due to the definition of \(G_{BC} \), (28) can be rewritten as
\[G_{BC} \tilde{F}_{zf} \tilde{F}_{zf}^H G_{BC}^H = \left(\begin{array}{c} G_1 \\ G_2 \end{array} \right) \tilde{F}_{zf} \tilde{F}_{zf}^H \left(\begin{array}{c} G_1^H \\ G_2^H \end{array} \right) \]
\[= \left(\begin{array}{c} G_1 \tilde{F}_{zf} \tilde{F}_{zf}^H G_1^H \\ G_2 \tilde{F}_{zf} \tilde{F}_{zf}^H G_2^H \end{array} \right) \]

From (29) and (30), it reveals obviously that
\[G_{zf} \tilde{F}_{zf} \tilde{F}_{zf}^H G_{zf}^H \xrightarrow{\text{a.s.}} \frac{1}{M} \sum_{i=1}^{2} \frac{1}{2} \log_2 \det \left(I_N + \left[\frac{P_U}{N} \beta_{zf}^2 \right] T_i^H T_i \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]

Putting (26) and (32) into (7), the deterministic achievable sum-rate with ZFR/ZFT relay precoding is derived as (33) at the top of this page.

Following the similar way, the deterministic result of the term \(E_R \) is approximated as
\[E_R \xrightarrow{\text{a.s.}} \bar{E}_R = \eta (1 - \rho) MP_U \left(\sum_{i=1}^{2} \frac{L_i \varphi_{u_i r}^2}{N} \right) \]

It is noteworthy that \(\bar{E}_R \) is not relevant to the relay precoding design.

B. Deterministic sum-rate with MRC/MRT relay precoding

1) MRC/MRT processing at the relay: The low-complexity MRC/MRT processing is adopted at the relay node and the precoding matrix is given by \(\tilde{F}_{mr} = \beta_{mr} \tilde{F}_{mr} \), where \(\beta_{mr} \) is the amplification factor with MRC/MRT relay precoding. Based on [20], [22], \(\tilde{F}_{mr} \) is formulated as
\[\tilde{F}_{mr} = G_{BC}^H T_i H_M^H = \sum_{j=1}^{2} G_j^H T_j H_j^H \]

2) Deterministic sum-rate with MRC/MRT relay precoding:
(a) Deterministic amplification factor:
Similar to the ZFR/ZFT precoding scheme, the relay amplification factor with MRC/MRT precoding can be written as (36) at the top of next page.

Before deriving the deterministic result of relay amplification factor with MRC/MRT processing, one vital proposition is provided as follows.

Proposition 1. For two independent and identically matrices \(X \sim \mathbb{C} \mathbb{N}_{N,M} \), \(Y \sim \mathbb{C} \mathbb{N}_{N,M} \), we have
\[\frac{1}{M} \text{XX}^H \xrightarrow{\text{a.s.}} \frac{1}{M} \text{YY}^H \]
\[\text{tr} \left(T_i^H I_N \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]
\[\left(\rho_R + \sigma_R z \right) \left(\frac{\beta_{zf}^2}{M L_i \varphi_{u_i r}^2} \right) \]

According to (35) and \(\text{tr} \left(AB \right) = \text{tr} \left(BA \right) \), we achieve
\[\frac{1}{M^3} \Omega_{mr1} = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \text{tr} \left(\frac{G_j G_j^H H_j H_j^H H_k H_k^H}{M} \right) \]

With (14), (15) and Proposition 1, the following result can be obtained
\[\frac{1}{M^3} \Omega_{mr1} \xrightarrow{\text{a.s.}} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} L_i L_j L_k \varphi_{u_i r}^2 \varphi_{u_j r}^2 \text{tr} \left(T_i^H T_j^H T_k^H \right) \]

Applying the same approach, we have
\[\frac{1}{M^3} \Omega_{mr2} = \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} \text{tr} \left(\frac{G_j G_j^H H_j H_j^H H_k H_k^H}{M} \right) \]
\[\sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{k=1}^{2} L_i L_j L_k \varphi_{u_i r}^2 \varphi_{u_j r}^2 \text{tr} \left(T_i^H T_j^H T_k^H \right) \]
the desired signal term into (b) Deterministic achievable sum-rate:

```latex
\sum_{i=1}^{2} \log_2 \det \left( I_N + \frac{P_U \rho M^3 \sum_{i=1}^{2} L_i L_i^2 \varphi_{u_i r} \varphi_{u_i r}^4 T_i T_i^H} {\rho \sigma_R^2 + \sigma_R^2} \right)
```

result of (42) can be expressed as

```latex
\tilde{R}_{sum,mr} = \sum_{i=1}^{2} \frac{1}{2} \log_2 \det \left( I_N + \frac{P_U \rho M^3 \sum_{i=1}^{2} L_i L_i^2 \varphi_{u_i r} \varphi_{u_i r}^4 T_i T_i^H} {\rho \sigma_R^2 + \sigma_R^2} \right)
```

Substituting (39) and (40) back into (36), we achieve the deterministic amplification factor of MRC/MRT relay precoding as (41) at the top of this page.

(b) Deterministic achievable sum-rate:

According to the precoding matrix \(F_{mr} \), we can transform the desired signal term into

```latex
1 \frac{M^4}{3} Q_i = \frac{\beta_{mr}^2}{M} \sum_{j=1}^{2} \frac{G_j G_j^H}{M} T_j H_j H_j H_k T_k G_k G_k^H}{M}.
```

Based on (14), (15) and Proposition 1, the deterministic result of (42) can be expressed as

```latex
1 \frac{M^4}{3} Q_i \xrightarrow{a.s. M \rightarrow \infty} \frac{\beta_{mr}^2}{M} L_i L_i^2 \varphi_{u_i r} \varphi_{u_i r}^4 T_i T_i^H.
```

By further deriving the deterministic result of noise term with the similar way, we achieve

```latex
1 \frac{M^3}{3} W_i = \frac{\beta_{mr}^2}{M} \sum_{j=1}^{2} \frac{G_j G_j^H}{M} T_j H_j H_j H_k T_k G_k G_k^H}{M} \xrightarrow{a.s. M \rightarrow \infty} \frac{\beta_{mr}^2}{M} L_i L_i^2 \varphi_{u_i r} \varphi_{u_i r}^4 T_i T_i^H.
```

Plugging (43) and (44) into (7), the deterministic achievable sum-rate with MRC/MRT relay precoding becomes (45) at the top of this page.

IV. TRANSMISSION POWER SCALING WITH ZFR/ZFT RELAY PRECODING

In this section, the deterministic sum-rate is future investigated under different power scaling laws. Under some power scaling cases, the deterministic sum-rate approaches a ceiling when the number of relay antennas grows to infinity [22]. This ceiling is defined as the asymptotic rate in this paper. Similar to [20], the achievable sum-rates of four prevalent power scaling cases with ZFR/ZFT relay precoding are investigated, as shown in Table I. It is noteworthy that the power factor of user \(E_U \) is fixed and unrelated with \(M \) and \(E_R \) has been stated in (34). When \(M \rightarrow \infty \), we have the following details of the asymptotic rate analysis.

A. Case 1: \(P_U = \tilde{E}_U \), \(P_R = \tilde{E}_R \)

Proposition 2. In this case, the received signal at \(U_i \) satisfies

```latex
\frac{N}{3} \sum_{i=1}^{2} \log_2 \left( 1 + \frac{\tilde{E}_R L_i \varphi_{u_i r}^2}{\rho \sigma_R^2 + \sigma_R^2} \right)
```

where \(\tilde{E}_R \) is a constant which is irrelevant to \(M \).

Proof. Refer to Appendix A.

From (46), we can conclude that the asymptotic sum-rate of Case 1 tends to infinity. Obviously, when \(M \) goes to infinity, the power splitting and common noise at the relay, the noise and self-interference at two users all disappear. The reason

TABLE I: The asymptotic sum-rates of four power scaling cases with ZFR/ZFT relay precoding

<table>
<thead>
<tr>
<th>Case</th>
<th>Power of each user</th>
<th>Power of relay</th>
<th>Asymptotic sum-rate: ZFR/ZFT ((M \rightarrow \infty))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(P_U = \tilde{E}_U)</td>
<td>(P_R = \tilde{E}_R)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>2</td>
<td>(P_U = \tilde{E}_U)</td>
<td>(P_R = \tilde{E}_R / M)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>3</td>
<td>(P_U = \tilde{E}_U / M)</td>
<td>(P_R = \tilde{E}_R)</td>
<td>(\frac{N}{3} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\tilde{E}R L_i \varphi{u_i r}^2}{\rho \sigma_R^2 + \sigma_R^2} \right))</td>
</tr>
<tr>
<td>4</td>
<td>(P_U = \tilde{E}_U / M)</td>
<td>(P_R = \tilde{E}_R / M)</td>
<td>(\frac{N}{3} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\tilde{E}_R \tilde{E}R L_i \varphi{u_i r}^2}{\rho \sigma_R^2 + \sigma_R^2} \right))</td>
</tr>
</tbody>
</table>
\[
\hat{R}_{\text{sum},zf} = \frac{1}{2} \sum_{i=1}^{2} \log_2 \det \left\{ \mathbf{I}_N + \left[\frac{\hat{E}_U}{\sqrt{M}} \rho \beta_{zf}^2 \mathbf{T}_i \mathbf{T}_i^H \right] \right\}^{-1},
\]
(48)

\[
\hat{\beta}_{zf} = \sqrt{\frac{\hat{E}_{RC} M^2}{\hat{E}_{RC} \rho (L_1 \varphi_{ru_i}^2 + L_2 \varphi_{ru_i}^2) + (\rho \sigma_R^2 + \sigma_R^2, z) \left(\sum_{i=1}^{2} \frac{N}{L_i L_i \varphi_{ru_i} \varphi_{ru_i}^2} \right)}}.
\]
(49)

\[
\hat{R}_{\text{sum},zf}^\infty = \lim_{M \to \infty} \hat{R}_{\text{sum},zf} = \frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\hat{E}_U \hat{E}_{RC} L_i^2 \varphi_{ru_i} \varphi_{ru_i}^2}{N \left(\rho \sigma_R^2 + \sigma_R^2, z \right) \hat{E}_{RC} + L_i L_i \varphi_{ru_i} \varphi_{ru_i}^2 \omega_R \sigma_R^2} \right).
\]
(52)

\[
\hat{R}_{\text{sum},mr} = \frac{1}{2} \sum_{i=1}^{2} \log_2 \det \left\{ \mathbf{I}_N + \left[\frac{\hat{E}_U}{N} \rho M^3 \beta_{mr}^2 \mathbf{T}_i \mathbf{T}_i^H \right] \right\}^{-1}
\]
(55)

\[
\hat{\beta}_{mr} = \sqrt{\frac{\hat{E}_{RC} \rho M^2 \left(\sum_{i=1}^{2} L_i L_i \varphi_{ru_i} \varphi_{ru_i}^2 \right)^2 + (\rho \sigma_R^2 + \sigma_R^2, z) \left(\sum_{i=1}^{2} L_i \varphi_{ru_i} \varphi_{ru_i}^2 \right) M^2 N \left(\sum_{i=1}^{2} L_i \varphi_{ru_i} \varphi_{ru_i}^2 \right)^2}}.
\]
(56)

\[
\hat{R}_{\text{sum},mr}^\infty = \lim_{M \to \infty} \hat{R}_{\text{sum},mr} = \frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\hat{E}_U \hat{E}_{RC} L_i^2 \varphi_{ru_i} \varphi_{ru_i}^2}{N \left(\rho \sigma_R^2 + \sigma_R^2, z \right) \hat{E}_{RC} + L_i \varphi_{ru_i} \varphi_{ru_i}^2 \omega_{mr} \sigma_R^2} \right).
\]
(59)

for this is that the MIMO channels of both sides of relay change more orthogonal as \(M \) increases. Moreover, due to the unlimited increase of harvested energy, the transmission power of relay goes to infinity when \(M \to \infty \).

B. Case 2: \(P_U = \hat{E}_U, \ P_R = \hat{E}_R / M \)

Proposition 3. In Case 2, the received signal term at \(U_i \) when \(M \to \infty \), is given by

\[
\frac{Y_i}{\sqrt{M}} \xrightarrow{a.s.} \frac{\hat{E}_{RC} L_i^2 \varphi_{ru_i} \varphi_{ru_i}^2}{N \left(L_i \varphi_{ru_i}^2 + L_2 \varphi_{ru_i}^2 \right)} \mathbf{T}_i \mathbf{x}_i.
\]
(47)

Proof. Refer to Appendix B.

Similar to Case 1, the asymptotic rate of Case 2 tends to infinity as \(M \) increases. However, the transmission power of relay that is supplied by the harvested energy approaches to \(\hat{E}_{RC} \), when \(M \to \infty \). From (47), we also discover that all the interference and noise are diluted to zero when \(M \) is large enough.

C. Case 3: \(P_U = \hat{E}_U / M, \ P_R = \hat{E}_R \)

Substituting the transmission power scaling of Case 3 into (33), the deterministic achievable sum-rate is re-expressed as (48) with \(\hat{\beta}_{zf} \) being (49) at the top of this page.

The asymptotic result of the deterministic sum-rate when \(M \to \infty \) is represented as

\[
\hat{R}_{\text{sum},zf}^\infty = \lim_{M \to \infty} \hat{R}_{\text{sum},zf} = \frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\hat{E}_U \hat{E}_{RC} L_i \varphi_{ru_i} \varphi_{ru_i}^2}{N \left(\rho \sigma_R^2 + \sigma_R^2, z \right) \hat{E}_{RC} + L_i \varphi_{ru_i} \varphi_{ru_i}^2 \omega_R \sigma_R^2} \right).
\]
(50)

From (50), it is noted that the asymptotic rate of Case 3 approaches to a ceiling rather than reduces to zero when the transmission power of users are scaled down to \(1/M \).

The main reason for this is that the relay system can obtain diversity gain from the massive antennas. Likewise, the PS factor has a great effect on the asymptotic sum-rate. Besides, the transmission power of relay tends to \(\hat{E}_{RC} \) when \(M \to \infty \).

We also observe that the noise term at users can be diluted to zero when \(M \to \infty \), whereas the noise from relay still exists. Likewise, the asymptotic sum-rate of Case 3 increases as \(N \) grows in a non-linear model.

D. Case 4: \(P_U = \hat{E}_U / M, \ P_R = \hat{E}_R / M \)

Plugging the transmission power scaling of Case 4 into (33), the deterministic achievable sum-rate is also represented by
In this case, with MRC/MRT relay precoding, the received signal at U_i satisfies

$$\frac{y_i}{\sqrt{M}} \xrightarrow{a.s.} \frac{\tilde{E}_{RC} L_i^2 L_i^2 \nu_{u_i}^4 \phi_{u_i}^4}{N \left(\sum_{i=1}^{2} L_i L_i^2 \nu_{u_i}^2 \phi_{u_i}^4 \right)} T_i x_i.$$

Proof. Refer to Appendix D.

Similar asymptotic performance can be obtained from Proposition 5. The asymptotic rate of Case 2 with MRC/MRT precoding also approaches to infinity as $M \to \infty$. Moreover, the useless influence of all the interference and noise is averaged to zero when M goes to infinity, whereas the transmission of relay approaches to a fixed value \tilde{E}_{RC}.

C. **Case 3:** $P_U = \tilde{E}_U / M$, $P_R = \tilde{E}_R$

Substituting the transmission power scaling of Case 3 into (45), the deterministic achievable sum-rate is re-expressed as (55) with $\tilde{\beta}_{mr}$ being (56) at the top of last page.

The asymptotic result of deterministic sum-rate when $M \to \infty$ is represented as

$$\tilde{R}_{sum,mr} = \lim_{M \to \infty} \tilde{R}_{sum,mr}$$

$$= \frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\tilde{E}_U \rho L_i \nu_{u_i}^2}{\left(\rho \sigma_R^2 + \sigma_{R,z}^2 \right) N} \right). \quad (57)$$

Obviously, the relay system with MRC/MRT precoding has the same asymptotic sum-rate as that with ZFR/ZFT precoding in Case 3. Equation (57) also indicates that PS factor has huge influence upon the asymptotic sum-rate. Moreover, we can observe that the asymptotic sum-rate increases with the growth of N, whereas it is not with linear model.

D. **Case 4:** $P_U = \tilde{E}_U / M$, $P_R = \tilde{E}_R / M$

Plugging the transmission power scaling of Case 4 into (45), the deterministic achievable sum-rate is also represented by (55), with $\tilde{\beta}_{mr}$ as

$$\tilde{\beta}_{mr} = \frac{\tilde{E}_{RC}}{\tilde{E}_U \rho \nu_{mr}^2 M^3 + \left(\rho \sigma_R^2 + \sigma_{R,z}^2 \right) \nu_{mr}^2 N M^3} \quad (58)$$

Table II: The asymptotic sum-rates of four power scaling cases with MRC/MRT relay precoding

<table>
<thead>
<tr>
<th>Case</th>
<th>Power of each user</th>
<th>Power of relay</th>
<th>Asymptotic sum-rate: MRC/MRT ($M \to \infty$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P_U = \tilde{E}_U$</td>
<td>$P_R = \tilde{E}_R$</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>$P_U = \tilde{E}_U$</td>
<td>$P_R = \tilde{E}_R / M$</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>$P_U = \tilde{E}_U / M$</td>
<td>$P_R = \tilde{E}_R$</td>
<td>$\frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\tilde{E}U \rho L_i \nu{u_i}^2}{\left(\rho \sigma_R^2 + \sigma_{R,z}^2 \right) N} \right)$</td>
</tr>
<tr>
<td>4</td>
<td>$P_U = \tilde{E}_U / M$</td>
<td>$P_R = \tilde{E}_R / M$</td>
<td>$\frac{N}{2} \sum_{i=1}^{2} \log_2 \left(1 + \frac{\tilde{E}U \tilde{E}{RC} L_i^2 L_i^2 \nu_{u_i}^4 \phi_{u_i}^4}{\left(\rho \sigma_R^2 + \sigma_{R,z}^2 \right) \tilde{E}{RC} L_i^2 L_i^2 \nu{u_i}^2 \phi_{u_i}^2 + \nu_{mr}^2 \sigma_z^2} \right)$</td>
</tr>
</tbody>
</table>
where \(a_{mr} = \sum_{i=1}^{2} L_i f_i^{2} \varphi_{ru_i}^{2} \varphi_{u_i,r}^{2} \) and \(b_{mr} = \sum_{i=1}^{2} L_i f_i \varphi_{ru_i}^{2} \varphi_{u_i,r}^{2} \). And, future defining \(\omega_{mr} = E_U p_a m_r + (\rho \sigma_R^2 + \sigma_R z) N b_{mr} \). With (55) and (58), the asymptotic result of deterministic achievable sum-rate when \(M \) tends to infinity is given by (59) at the top of last page.

As shown in (59), the asymptotic rate of Case 4 with MRC/MRT precoding is similar to that of Case 4 with ZFR/ZFT. Both of them approaches to a constant value when \(M \to \infty \). Besides, the asymptotic performance is also uncertain with the growth of \(N \).

VI. SIMULATION AND NUMERICAL RESULTS

In this section, extensive simulation results are provided to discuss the rate performance of massive MIMO two-way relaying system with SWIPT. As is well illustrated in Fig. 2, three transceivers in the two-way relay system are arranged in one line. We set the distance from \(U_1 \) to \(U_2 \), i.e., \(d = 40 \) meters, and denote \(U_1 - R \) and \(R - U_2 \) distances as \(d_1 = \xi d \) meters and \(d_2 = (1 - \xi) d \) meters, respectively. \(\xi \in (0, 1) \) is the placement ratio of \(R \) in the relay system. Following [26], [29], [31], we model the large-scale fading as \(L_i = \vartheta d_i^{-2} \), where \(2 \) strands for the path loss exponent and \(\vartheta \) is the condition parameter. Besides, all variances of the small-scale fading are set as \(\varphi_{u_i,r}^2 = \varphi_{ru_i}^2 = 1 \), \(i = 1, 2 \). Unless otherwise explained, the noise variances at all transceivers are same as \(\sigma_R^2 = \sigma_{R,z}^2 = \sigma_t^2 = \sigma_z^2 = -50 \) dBm. We also specify \(\eta = 0.8 \), \(\xi = 0.5 \), \(N = 2 \), \(T = 1 \), \(\vartheta = 1 \), and \(E_U = 10 \) dBm.

In Fig. 3, the achievable sum-rate of the relay system versus the number of relay antennas \(M \) is provided for different power scaling cases. As expected, the theoretical analysis of sum-rates matches well with the real instantaneous sum-rates in various cases. It is intuitive that the sum-rates of four power scaling cases increase as \(M \) goes to infinity, the sum-rates of Case 1 and 2 grow unboundedly, whereas the sum-rates of Case 3 and 4 converge the corresponding asymptotic sum-rates. As can be observed in Fig. 3 (a), the convergence speed is \(O\left(\frac{1}{M}\right) \) for Case 3 but \(O\left(\frac{1}{M^2}\right) \) for Case 4. Furthermore, if \(M \) is small, e.g., \(M = 5 \), the sum-rates of all four cases with MRC/MRT relay precoding are better than those with ZFR/ZFT relay precoding. This happens because for ZFR/ZFT relay precoding, forcing the MIMO channel to be orthogonal leads to the noise enhancement effect on the relay system when \(M \) is small. As mentioned above, these are consistent with the simulation results in [20], [22]. Besides, when \(M \) is large enough such as \(M = 200 \), two precodings have

![Fig. 2: The placement of massive MIMO two-way relay system.](image1)

![Fig. 3: Achievable sum-rate versus the number of relay antennas \(M \), \(\sigma^2 = -50 \) dBm.](image2)

![Fig. 4: Achievable sum-rate versus the placement ratio of relay node, \(\vartheta = 3 \), \(\sigma^2 = -50 \) dBm, \(M = 500 \).](image3)
almost the same rate performance. This can be obtained by the fact that when M grows large, the orthogonal channels are easy to be obtained for two precodings and the sum-rates are derived based on the assumption that the self-interference can be cancelled perfectly at two users.

Fig. 4 demonstrates the effect of the placement ratio of relay node on the sum-rates performance of massive MIMO relay system. It is intuitive that when ξ is small, the sum-rates of four cases decrease as ξ increases. Nonetheless, when ξ is large, the rate performance will improve as ξ grows. One reason is that the closer R is located to U_1 or U_2, the more EH efficiency R has. Besides, when R is close to U_i, the MIMO channel between R and U_i has better channel quality.

Fig. 5 reveals the influence of the user power factor on the sum-rate performance. Obviously, the achievable sum-rates of four power scaling cases grow unboundedly as E_U increases. However, when $M = 5$, the sum-rates increase non-linearly with E_U and the rate performance with MRC/MRT relay precoding is better that with ZFR/ZFT relay precoding that is
consistent with the simulation results of Fig. 3. When \(M \) is equal to 500, the sum-rates of Case 1 and 2 grow linearly with increasing \(\tilde{E}_U \). Besides, it is intuitive that two relay precoding schemes, i.e., MRC/MRT and the ZFR/ZFT, have almost the same rate performance when \(M = 500 \).

Fig. 6 describes the achievable sum-rate versus the PS factor of relay node. It can be noticed that the sum-rates of four power scaling cases are concave function with the PS factor of relay node. Similar to the results of Fig. 3, when \(M = 5 \), the MRC/MRT precoding outperforms ZFR/ZFT precoding in whole region of \(\rho \), while the gap between two precodings almost disappears when \(M = 500 \).

Fig. 7 illustrates the achievable rate versus the number of user antennas. It is seen that the sum-rates of all cases increase non-linearly with the growth of \(N \). It is noteworthy that when the number of user antennas is equal to 50, i.e., \(N = 50 \), the sum-rates of four cases with ZFR/ZFT precoding is quite low. This is because for ZFR/ZFT relay precoding, when \(2N = M \), the MIMO relay channels are very ill-conditioned to force inter-interference and noise to zero. Hence, it is hard to avoid the effect of noise enhancement. This is consistent with the result in [36].

Fig. 8 shows the impact of the noise variance \(\sigma^2 \) on the achievable sum-rate of massive MIMO relay system. It can be observed that the increase of \(\sigma^2 \) can decrease the achievable sum-rates of all cases. This is because the received SNRs at users become lower when \(\sigma^2 \) is larger. Interestingly, when \(\sigma^2 \) is large and \(M = 5 \), the relay system with MRC/MRT precoding has a better rate performance than that with ZFR/ZFT precoding, while the impact of the precoding scheme on the achievable sum-rate becomes smaller when \(M \) increases. There are two reasons accountable for this phenomenon. 1) Based on the above theoretical analysis, the achievable sum-rate is determined by the received SNRs at two users. When \(\sigma^2 \) is large and \(M = 5 \), the SNRs are low, which leads that the relay system with MRC/MRT precoding has the advantage over that with ZFR/ZFT precoding. 2) when \(M = 500 \), the channels created by ZFR/ZFT precoding become nearly orthogonal, which is consistent with the results of Fig. 3.

Fig. 9 compares the sum rate performance of the proposed PS relay protocol and the TS relay protocol in [12]. It is intuitive that the proposed PS relay protocol has a significant performance gain over the TS relay protocol in [12]. This is because compared to TS protocol, the PS protocol takes advantage of the broadcast character of RF signal to achieve the energy-rate trade-offs. This is consistent with the analysis and results in [37]. Besides, the TS two-way relay protocol of [12] abandons one-user energy gain in the EH phase, which leads that the relay node has less transmission power in the BC phase. Although the PS-based relay system has a better rate performance than the TS-based one, the practical circuit for TS protocol has a low complexity. According to the practical requirement, the relay systems are designed to achieve different tradeoffs between the performance and the complexity.
VII. Conclusion

In this paper, a massive MIMO two-way relaying system with ZFR/ZFT and MRC/MRT relay precodings has been studied in order to analyze and improve the performance of IoT networks. The SWIPT technique has been considered in the relay system to enhance the reliability. After deriving the deterministic sum-rate, the asymptotic performance of four classical power scaling cases has been studied and proved by the simulation results when the number of relay antennas increased to infinity. It was shown that the sum-rates of Case 3 and 4 converge to the corresponding asymptotic values.

ACKNOWLEDGMENT

The authors sincerely thank the editor and anonymous reviewers for their helpful reviews and constructive comments, which have significantly improve the quality of the paper.

APPENDIX A

PROOF OF PROPOSITION 2

Substituting (8) back into (5), we have

\[Y_i \frac{1}{\sqrt{M}} = \sqrt{E_U} \sqrt{\rho \beta_f} G_i \bar{F}_{zf} H_i x_i + \sqrt{\rho \beta_f} G_i \bar{F}_{zf} n_R + \frac{\beta_f}{M} G_i \bar{F}_{zf} n_R + 1 + \frac{n_i}{M}, \]

with \(P_R = \hat{E}_{RC} M \) and (22), we have

\[\frac{\beta_f}{M} \xrightarrow{a.s.} M \xrightarrow{\infty} \hat{E}_{RC} L_1 \frac{L_2}{\sqrt{M}} \frac{\hat{E}_{RC} L_1 L_2}{\sqrt{M}} \frac{\psi_{ru_1}^2}{\psi_{ru_2}^2}. \]

Besides, on the basis of (26) and (32), we achieve the deterministic result as follows

\[G_i \bar{F}_{zf} H_i \xrightarrow{a.s.} M \xrightarrow{\infty} T_i, \quad G_i \bar{F}_{zf} \xrightarrow{a.s.} M \xrightarrow{\infty} 0_{N \times M}, \]

Moreover, the noise term in (60) is limited by

\[\frac{n_i}{M} \xrightarrow{a.s.} M \xrightarrow{\infty} 0_{N \times N}. \]

Therefore, putting (61), (62) and (63) back into (60), the received signal in (46) can be achieved.

APPENDIX B

PROOF OF PROPOSITION 3

Plugging the power scaling of Case 2 and (8) into (5), the received signal at \(U_i \) can be rewritten as

\[\frac{Y_i}{\sqrt{M}} = \sqrt{E_U} \sqrt{\rho \beta_f} G_i \bar{F}_{zf} H_i x_i + \sqrt{\rho \beta_f} G_i \bar{F}_{zf} n_R + \frac{\beta_f}{M} G_i \bar{F}_{zf} n_R + 1 + \frac{n_i}{M}, \]

with (61), with \(P_R \xrightarrow{a.s.} M \xrightarrow{\infty} \hat{E}_{RC} \), we achieve

\[\frac{\beta_f}{M} \xrightarrow{M \xrightarrow{\infty} \hat{E}_{RC}} \sqrt{\hat{E}_{RC}} L_1 \frac{L_2}{\sqrt{M}} \frac{\hat{E}_{RC} L_1 L_2}{\sqrt{M}} \frac{\psi_{ru_1}^2}{\psi_{ru_2}^2}. \]

Therefore, substituting (62), (63) and (65) back into (64), we can obtain (47). This completes the proof.

APPENDIX C

PROOF OF PROPOSITION 4

Putting (35) into (5), we have

\[\frac{Y_i}{M} = \sqrt{E_U} \sqrt{\rho \beta_m} G_i \bar{F}_{mr} H_i x_i + \sqrt{\rho \beta_m} G_i \bar{F}_{mr} n_R + \frac{\beta_m}{M} G_i \bar{F}_{mr} n_R + 1 + \frac{n_i}{M}. \]

With \(P_R = \hat{E}_{RC} M \), (34) and (41), we achieve

\[\frac{\beta_m}{M} \xrightarrow{M \xrightarrow{\infty} \hat{E}_{RC}} \sqrt{\hat{E}_{RC}} L_1 \frac{L_2}{\sqrt{M}} \frac{\hat{E}_{RC} L_1 L_2}{\sqrt{M}} \frac{\psi_{ru_1}^2}{\psi_{ru_2}^2}. \]

Substituting the definition of \(\bar{F}_{mr} \) into the term \(\frac{G_i \bar{F}_{mr} H_i}{M^2} \), we have

\[G_i \bar{F}_{mr} H_i = \frac{2}{M^2} \frac{G_i G_j^H}{M} \frac{T_j H_j^H}{M}, \]

Besides, we have

\[G_i \bar{F}_{mr} \xrightarrow{a.s.} M \xrightarrow{\infty} 0_{N \times M}, \quad \frac{n_i}{M} \xrightarrow{a.s.} M \xrightarrow{\infty} 0_{N \times 1}. \]

Finally, Substituting (67), (68) and (69) back into (66), (53) is obtained for Case 1 when \(M \xrightarrow{\infty} \infty \).

APPENDIX D

PROOF OF PROPOSITION 5

Substituting the power scaling of Case 2 and (35) into (5), the received signal at \(U_i \) can be re-expressed by

\[\frac{Y_i}{\sqrt{M}} = \sqrt{E_U} \sqrt{\rho M^2 \beta_m} \frac{G_i \bar{F}_{mr} H_i}{M^2} x_i + \sqrt{\rho M^2 \beta_m} \frac{G_i \bar{F}_{mr} n_R}{M^2} + \frac{\beta_m}{M} G_i \bar{F}_{mr} n_R + 1 + \frac{n_i}{M}. \]

\[\right. \]
Similar to (67), with $P_R \xrightarrow{\alpha.s.} E_{RC}$, we obtain

$$M^2 \beta_{wu} \xrightarrow{\alpha.s.} \sum_{i=1}^{N} E_{U \rho} \left(\sum_{i=1}^{N} L_i E_i^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} E_{ij}^2 + \sum_{i=1}^{N} \sum_{j=1}^{N} E_{ji}^2 \right)$$

(71)

Therefore, putting (68), (69) and (70) into (71), we can achieve (54). This completes the proof.

REFERENCES

Gang Wang (M’11) received the B.E., M.E., and Ph.D. degrees in communication engineering from the Harbin Institute of Technology, Harbin, China, in 1984, 1987, and 2007, respectively. He is currently a Professor with the Communication Research Center, Harbin Institute of Technology. He is also the Chair- man of the Department of Communication Engineer- ing. He has published over 60 research papers and 4 books. His general interests include ad hoc networks, wireless communications, and artificial intelligence. He was a recipient of the National Grade II Prize of Science and Technology Progress and the National Grade III Prize of Science and Technology Progress.

Bo Li (M’19) received the bachelor’s degree in com- munication engineering and the master’s degree and Ph.D. degrees in information and communication engineering from the Harbin Institute of Technology, China, in 2007, 2009, and 2013, respectively. He was a Visiting Ph.D. Student with the School of EEE, Nanyang Technological University, Singapore, from 2012 to 2013. Since 2013, he has been with the School of Information and Electrical Engineering, Harbin Institute of Technology, Weihai, China, as an associate professor. His interested research areas are physical layer network coding, mobile ad hoc networks, and adaptive modulation and coding.

Hongjuan Yang (M’19) received the bachelor’s degree in communication engineering from Jilin University, China, in 2007, and the master’s and Ph.D. degrees in information and communication engineering from the Harbin Institute of Technology, China, in 2009 and 2013, respectively. She was a Visiting Ph.D. student with the School of EEE, Nanyang Technological University, Singapore, from 2012 to 2013. Since 2013, she has been a Lecturer with the School of Information and Electrical En- gineering, Harbin Institute of Technology, Weihai, China. Her interested research areas are cooperative diversity technology, physical-layer network coding, and delay tolerant networks.

Yulin Hu (S’11-M’15-SM’18) received the M.Sc.E.E. degree from USTC, China, in 2011, and the Ph.D.E.E. degree (Hons.) from RWTH Aachen University. He completed the dissertation of the joint Ph.D. degree under the supervision of Prof. A. Schmeink with RWTH Aachen University, and under the supervision of Prof. J. Gross with the KTH Royal Institute of Technology in 2015. He was a Research Fellow with RWTH Aachen University in 2016. In 2017, he was a Visiting Scholar with Prof. M. C. Gursoy in Syracuse University, USA. Since 2017, he has been a Senior Researcher and the Project Lead with the ISEK Research Group, RWTH Aachen University. His research interests are in information theory and optimal design of wireless communication systems. He has been invited to contribute submissions to multiple conferences. He was a recipient of the IFIP/IEEE Wireless Days Student Travel Awards in 2012. He received the Best Paper Awards from the IEEE ISWCS 2017 and the IEEE PIMRC 2017. He is currently serving as an Editor for the Physical Communication (Elsevier).

Anke Schmeink (M’11–SM’18) received the Diploma degree in mathematics in medicine and the Ph.D. degree in electrical engineering and infor- mation technology from RWTH Aachen University, Germany, in 2002 and 2006, respectively. She was a Research Scientist with Philips Research before joining RWTH Aachen University in 2008, where she has been an Associate Professor since 2012. She spent several research visits with The University of Melbourne and the University of York. She is a member of the Young Academy, North Rhine- Westphalia Academy of Sciences. Her research interests are in information theory, systematic design of communication systems, and bioinspired signal processing.